Syntheses and Reactivity of Aminobis(diorganylamino)phosphanes*

Gerold Schick^a, Armin Loew^a, Martin Nieger^a, Karri Airola^b, and Edgar Niecke^{*a}

Anorganisch-Chemisches Institut der Universität Bonn^a, Gerhard-Domagk-StraRe **1,** D-53121 Bonn, Germany

Department of Chemistry, University of Jyväskylä^b, P.O. **Box** 35, FIN-40101, Jyvaskyla, Finland

Received April *2,* 1996

Key Words: Aminobis(diorganylamino)phosphanes *I* P-Hydrophosphane imine *I* Complexation reactions

Aminobis(diorganylamino)phosphanes $(R_2N)_2$ PNH₂ (R = *i*Pr, c-Hex, Ph) **(2a-c),** were obtained by treatment of the corresponding **chlorobis(diorgany1amino)phosphanes la-c** with lithium amide in liquid ammonia. The transition metal phosphane complex $(R_2N)_2(H_2N)PNi(CO)_3$ (3) was prepared by reaction of **2a** with tetracarbonylnickel. N-Complexation of **2a** with trimethylalane affords the iminophosphorane-alane adduct $(R_2N)_2HP=N(H)AlMe₃ (4)$ by 1,2-H shift from the nitrogen to the phosphorus atom. The corresponding reaction with aluminium trichloride leads to the formation of the salt $[(R_2N)_2HP=N(H)]_2AIC1_2^*[AIC1_4]$ (5), in which two imino-

phosphorane moieties are linked by an AlCl₂ bridge. Lithiation of **2a** and subsequent reaction with titanocene dichloride result in nucleophilic replacement of one chlorine atom to give the phosphanylamido-substituted titanocene compound $(R_2N)_2P-N(H)Ti(Cl)CD_2$ (6a), which rearranges to its P-hydroiminophosphorane tautomer $(R_2N)_2P(H) = NTI(CI)CP_2$ **(6b)** on gentle heating. No isomerisation was observed in the case of N-borylated aminophosphane $(R_2N)_2P-NH-(9-BBN)$ **(7),** obtained by reaction of lithiated **2a** with B-C1-9-BBN. The X-ray structure analyses of compounds **2b, c, 3, 4, 5,** and **6a** are discussed.

In the past triaminophosphanes have been the subject of extensive studies^[1]. The ready availability of substituted triaminophosphanes $(R_2N)_3P$ by reaction of PCl₃ with secondary amines^[2], their versatile reactivity and their properties as complex ligands $[3]$ characterise them as valuable synthons in organophosphorus chemistry. Amongst other reactions, oxidation to phosphoranes^[4] and phosphonium salts^[5], transesterification and transamination reactions^[4] as well as displacement reactions with hydrogen halides and boron halides furnishing the corresponding aminohalophosphanes^[6] have been described. In contrast, analogous triaminophosphanes derived from primary amines $(RHN)_{3}P$ lack thermal stability, due to facile amine elimination at ambient temperature, which leads to condensation reactions^[7]. Parent triaminophosphane $(H_2N)_3P$ was postulated as an intermediate of the complete ammonolysis of phosphorus trichloride^[8]. However, there is no spectroscopic evidence known for this species. Elimination of ammonia results in the formation of not well-defined solids of varying composition. Mention should be made that thermally stable transition metal complexes $(H_2N)_3PM(CO)_5$ (M = Cr, Mo, W) are well-known^[9]. Mixed aminophosphanes of the type $(R_2N)_{3-x}P(NH_2)_x$ (x = 1, 2) have not been described so far. Formation of polymeric not well-defined products mas reported for the ammonolysis of $(Ph_2N)PCl_2^{[10]}$, whilst oligomeric hydridophosphazenes were obtained by treatment of ammonia with $(Me_2N)_2PC1$, which themselves easily undergo condensation reactions at ambient temperature^[11].

Recognizing the potential synthetic utilily of triaminophosphanes bearing $NH₂$ groups as substituents with respect to an additional reactive site, we have focussed our attention on the stabilisation of such species by introduction of sterically protecting diorganylamino groups^{$[12]$} into the molecules.

In this paper we report on the synthesis, crystal structure, and reactivity of the first **aminobis(diorgany1amino)phos**phanes $(R_2N)_2P-NH_2$.

Results and Discussion

The reactions of the **bis(diorgany1amino)chlorophos**phanes **la-c** with lithium amide in liquid ammonia at -35° C afforded the corresponding aminobis(diorganylamino)phosphanes **2a-c** which were isolated as an air- and moisture-sensitive, colourless oil **(2a)** or colourless crystals **(2b, c)** (Scheme **1).** The compounds can be stored at low temperatures for weeks without decomposition. However, in solution at ambient temperature they slowly undergo condensation reactions to give oligomeric and polymeric hydridophosphazenes^[13] by elimination of the corresponding diorganylamine. Elimination of ammonia and formation of diphosphanylamines $R_2P-NH-PR_2$ as reported for $Me₂PNH₂^[2c]$ or $Ph₂PNH₂^[14]$ were not detected in the case of compounds **2a-c.**

Scheme 1

Their constitution became evident from multinuclear NMR investigations. The replacement of the chlorine atom in the chlorophosphanes $1a-c$ by the amido group causes a significant downfield shift of the phosphorus atom signal in the ³¹P-NMR spectrum **(2a:** $\Delta\delta = 62.0, \delta = 77.0;$ **2b:** $\Delta\delta = 64.0, \delta = 80.4;$ **2c**: $\Delta\delta = 52.0, \delta = 71.5$, as observed in the case of **tris(diorganylamin0)-substituted** derivatives^[15]. The presence of the $NH₂$ group in $2c$ is evidenced by the coupling of the two amino protons with the phosphorus atom $(^{2}J_{\text{PH}} = 17.1 \text{ Hz})$. This coupling was not observed in the case of compound **2a** or **2b,** which might be the result of a fast intermolecular proton exchange.

Suitable crystals of compounds **2b** and **c** for X-ray structure analyses were obtained from pentane/diethyl ether at -78°C. Their structures are given in Figures 1 and **2** and selected structural parameters are listed in Table 1. The geometry around the phosphorus atom in **2b** and **c** is distorted trigonal-pyramidal $(2b: \Sigma \text{ P1}: 307^\circ, 2c: \Sigma \text{ P1}: 306^\circ)$, with typical P(III)-N['6] bond lengths. Whilst in **2b** the P-N bond lengths between the phosphorus atom and the two R₂N groups $[P1-N2: 169.1(2), P1-N3: 169.5(2)]$ are slightly shorter than the bond length between the phosphorus and the nitrogen atom of the NH_2 group $[Pl - N1]$: 172.2(2)], the situation is reversed in **2c** [PI-NI: 167.0(2), Pl-N2: 173.4(2), Pl-N3: 173.3(2)]. In contrast to the nitrogen atoms in the diorganylamino groups, which exhibit a planar geometry **(2b:** C N2: 360", **C** N3: 360"; **2c: C** N2: 359°, Σ N3: 360°), the nitrogen atoms of the NH₂ groups show a distinct pyramidalisation $(2b: \Sigma N1: 326^{\circ}; 2c: \Sigma N1)$: 347"). Two molecules of **2b** are connected by van der Waals contacts between the phosphorus atom and one of the hydrogen atoms of the NH2 group (288 pm). In **2c** the intramolecular distances between one NH proton and the carbon atoms of one phenyl group $(H1 \cdots C1 - C6: 280 - 331)$

Figure **1.** Molecular structure of aminophosphane **2b** in the solid state. C-H hydrogen atoms are omitted for clarity, second molecule generated by transformation $-x$, $1 - y$, $-z$

pm) lie in the range of the sum of the van der Waals radii.

Due to facile elimination of amine all attempts to crystallise **2a** have failed so far. However, the corresponding phosphane complex **3,** obtained by treatment of **2a** with tetraFigure **2.** Molecular structure of aminophosphane **Zc** in the solid state. C-H hydrogen atoms are omitted for clarity, second molecule generated by transformation $1 - x$, $1 - y$, $1 - z$

Table 1. Selected bond lengths [pm] and bond angles ["I of com- pounds **Zb, 2c, 3,** and **6a**

^[a] Average N-C bond lengths are given. $-$ ^[b] Average Ti-Cp(centroid) distance.

carbonylnickel, was isolated by crystallisation from toluene as colourless crystals suitable for an X-ray analysis (Figure 3).

Two indepent, nearly identical molecules are found in the asymmetric unit of phosphane complex **3.** The phosphorus and the nickel atom exhibit a distorted tetrahedral environment, and the three $P-N$ bond lengths vary only slightly around the average bond length of 169 pm (Table 1). The structural parameters of the $P-Ni(CO)$ ₃ moiety are consistent with those reported previously for $(CO)_{3}$ Ni-phosphane complexes^[17].

In contrast to the transition metal fragment, which attacks the phosphorus atom, a hard Lewis acid should prefer a complexation via the nitrogen atom of the amino group. This expectation was verified by reaction of **2a** with AlMe, in pentane at -78° C and resulted in the formation of the P-hydrophosphoranimine-N-alane adduct **4** (Scheme 2).

Figure 3. Molecular structure of one of the crystallographically independent molecules of **3.** C-H hydrogen atoms are omitted for

Coordination of the Lewis acid at the less sterically protected nitrogen atom of the $NH₂$ group with subsequent hydrogen shift from the nitrogen to the phosphorus atom was also observed in the reaction of 2a with AlCl₃. However, here the salt $[(R_2N)_2HP=N(H)]_2AICI_2^+$ $[AICI_4]^-$ (5) was formed (Scheme *2).*

Scheme 2

The isomerisation of N-H aminophosphanes $R_2PN(H)R'$ to the corresponding $P-H$ iminophosphoranes $R_2P(H)NR'$ has been the subject of several theoretical and experimental investigations^[18]. The relative stability of both isomers is known to be dependent on the steric as well as the electronic influences exerted by the substituents R and R'. Electron-withdrawing groups R' such as $SO_2C_6H_4CH_3$ and $PS(OC_6H_5)_2$ as well as bulky substituents R and R' are known to stabilize the P-H isomer. To the best of our knowledge, compounds **4** and *5* are the first examples in which the rearrangement of an aminophosphane to its phosphorane tautomer is induced by complexation by Lewis acids at the nitrogen lone pair^[19].

Diagnostic of the 1,2-hydrogen shift from the nitrogen to the phosphorus atom in compound **4** are the high-field shift of the ³¹P-NMR signal (δ = 13.7) and the characteristic PH coupling constant^[20] (${}^{1}J_{\text{PH}}$ = 563.3 Hz). In the ¹H-NMR spectrum the proton bound directly to the phosphorus atom gives rise to a doublet of doublets ($\delta = 7.05$, $^{1}J_{\text{PH}} =$ 563.3, ${}^{3}J_{\text{HH}}$ = 11.9 Hz), which clearly indicates a species with the $(>N)_2P(H)NH$ - moiety. Very similar ³¹P- and ¹H-NMR spectra were observed for compound 5 (³¹P-NMR: $\delta = 13.8$; ¹H NMR: $\delta = 7.22$, ¹J_{PH} = 578.6, ³J_{HH} = 10.8 **Hz)** .

The formation of the salt **5** in solution becomes apparent from the 27 Al-NMR spectrum which shows the characteristic signal of AlCl₄ (δ = 101.2). The Al nuclei in the cation gives rise to a broadened resonance at $\delta = 100.2$. Single crystals of products **4** and *5* were obtained by recrystallisation from dichloromethane and dichloromethane/pentane. Their molecular structures were verified by X-ray structure analyses to be **bis(diisopropy1amino)phosphane** imine-N-trimethylalane **(4)** and bis[bis(diisopropylamino) phosphane **iminato]dichloroaluminium(III)** tetrachloroaluminate(II1) **(5)** (Figures 4 and 5).

Figure 4. Molecular structure of the alane adduct **4.** C-H hydro-

Whereas the structure of compound **4** proves the formation of a P-hydrophosphane imine-AlMe₃ adduct, two equivalents of both 2a and AlCl₃ react to give the salt 5.

Figure 5. Molecular structure of 5. C-H hydrogen atoms are omitted for clarity

Table 2. Selected bond lengths [pm] and bond angles ["I of com- pounds **4** and 5

The cation in *5* consists of two phosphane imine groups, which are linked by their imine nitrogen atoms by a bridging AlCl₂ group. The anion $[AlCl₄]⁻$ shows only a slight deviation from the ideal tetrahedral geometry, whereby two chlorine atoms participate in the formation of weak $Cl-H-N$ hydrogen bonds (N1-C13: 351, N4-C14: 360) pm). The imine hydrogen atoms and the P-H hydrogen atoms adopt an almost antiperiplanar conformation in both compounds.

Whilst the Al-N bond length (Table 2) in **4** [192.8(6) pm] is of similar magnitude as reported for compounds containing an imine nitrogen-aluminium moiety $[(Me₂-$ CNAlMe₂)₂: 195.5, 193.0 pm^[21]; N(PPh₂NSiMe₃)₂AlMe₂: 194.0 pm^[22]], the Al–N bond lengths in 5 are significantly shortened [184.7(7), 184.9(6) pm]. The situation is reversed in the case of the $P-N(H)$ bond lengths for both compounds **[4:** 154.9(5); *5:* 161.7(6), 161.0(6) pm]. The bond lengths between the phosphorus and the two nitrogen atoms of the diorganylamino groups differ only slightly for both compounds **[4,** *5:* 163 pm (average)]. These results reflect a different extent of polarisation in the $P-N-Al$ fragment in both compounds. The further bond lengths and angles show no particularity.

Replacement of thc hydrogen at the NH2 group in **2a** by a transition metal fragment was easily achieved by metallation with *n*-butyllithium (at -30°C in THF) and subsequent reaction with a transition metal halide. For **2a** and titanocene dichloride this afforded the titanocene complex **6a** (Scheme **2),** which was isolated by crystallisation from diethyl ether as dark red crystals. On gentle heating to 40"C, **6a** slowly rearranges in solution to the thermodynamically more stable P-hydrophosphane iminato isomer **6b.**

The rearrangement of **6a** to its phosphorane tautomer **6b** was unambiguously proven by a significant shielding of the phosphorus atom **(6a:** δ = 98.6; **6b:** δ = -3.9) as well as the characteristic PH coupling constant $(^1J_{\text{PH}} = 521.4 \text{ Hz})$.

The results of an X-ray structure analysis of the titanocene complex **6a** are illustrated in Figure 6, and selected structural parameters are given in Table 1. The $P-N$ bond lengths and angles in **6a** differ only slightly from thosc in **2b** except for the planarity at the titanium-bound nitrogen $(\Sigma \text{ N1: } 359^{\circ})$. The Ti-N bond length of 193.7(3) pm is significantly shorter than those found in the related compound $(\eta^5$ -Cp)₂Ti(η^1 -NC₄H₄)₂^[23] (208.5 pm). The planarity at N1, the short Ti-N bond, the nearly eclipsed conformation of the lone pair at N1 and the chlorine atom indicate $p_{\pi} - d_{\pi}$ interaction between titanium and nitrogen. The preference of this conformation was predicted by Lauher and Hoffmann^[24] for Cp₂M(NR₂)L' complexes (L' = non π donor ligand) and is explained in terms of a π -back donation from the N lone pair to an empty a_1 orbital of the bent titanocene unit.

Figure 6. Molecular structure of **6a.** C-H hydrogen atoms are omitted for clarity

A proton transfer from N to P was not observed in the case of the N-borylated pliosphane **7.** which was obtained by treatment of lithiated 2a with B-Cl-9-BBN at -78 °C in THF (Scheme *2).* The higher thermodynamic stability of aminophosphane **7** compared to its P-H isomer was already demonstrated by Bertrand et al., who observed the formation of analogous N-borylated aminophosphanes by hydrogen transfer from the corresponding P-hydrophosphane iminato isomer, obtained by reaction of bis(diorganylamino)phosphanyl azides with trialkylboranes^[25]. The structure of **7** was derived from its NMR spectroscopic data, which are in accordance with those found for compounds of the type $(iPr_2N)_2P-NH-BR_2$.

We thank the *Fonds der Chemischen Industrie* for financial support. K. A. thanks the *Finnish Academy* for financial support.

Experimental

All manipulations were carried out with the exclusion of air and moisture under argon. Solvents were dried by using standard procedures. The bis(diorganylamino)chlorophosphanes $1a^{[2b]}$, $1b^{[26]}$, $1e^{[27]}$, and B-Cl-9-BBN^[28] were prepared by literature methods. Tetracarbonylnickel, Ni(CO)₄, dichlorobis(cyclopentadienyl)titanium(IV), Cp_2TiCl_2 , trimethylalane, AlMe₃ (2 M in toluene), and aluminium trichloride were used as supplied. $-$ NMR: Bruker AMX 300; "P: 121.5 MHz, external standard 85% H3P04; 'H: 300.1 MHz, external standard TMS; ¹³C: 75.5 MHz, external standard TMS; ¹¹B; 96.3 MHz, external standard $BF_3 \cdot O(C_2H_5)$; ²⁷Al: 300.1 MHz, $Al(H₂O)₆³⁺$ external standard; positive signs denote shifts to lower frequencies. - **MS:** Kratos Instruments Concept lH, Kratos Instruments, MS 50, VG Instruments VG 12-250 (EI, 70 eV). $-$ Melting points were determined in sealed glass capillaries and are uncorrected.

Aminobis(diisoprop~1amino)phosphane (Za), *Aminobis(dicyc1ohexylamino)phosphane* (Zb), *und Aininobis(diphcny1amino)phosphane* (2c): To a suspension of 15 ml of LiNH₂ (1.1 g) in 75 ml of liquid ammonia a solution of 50 mmol of **1** (a: 13.3 **g;** b: 21.3 *g;* c: 20.1 g) in 25 ml of THF is slowly added at -40° C. After stirring of the combined solutions at -35° C for some time (a: 45 min; **b**: 6 h; **c:** 45 min) the ammonia is evaporated and the organic solvent removed under reduced pressure. To the remaining residue 30 ml of pentane (c: pentane/toluene, $1:1$) is added, the precipitated LiCl is filtered off and the solvent removed under reduced pressure. Pure **2b** and **2c** are obtained as colourless solids by recrystallisation from diethyl ether at -78 °C, whereas the liquid 2a is purified by distillation at 10^{-3} Torr at $45-50$ °C.

2a: Yield: 16.8 g (68%), b.p. $40-43^{\circ}C/10^{-3}$ Torr. - $^{31}P\{^{1}H\}$ NMR (C₆D₆): $\delta = 77.0$ (s). $- {}^{13}C({}^{1}H)$ NMR (C₆D₆): $\delta = 44.2$ (d, $^{2}J_{CP}$ = 12.2 Hz, PNC), 25.1 (d, $^{3}J_{CP}$ = 8.6 Hz, CH₃). - ¹H NMR (C_6D_6) : $\delta = 3.6$ (m, 4H, CH), 1.1 (d, ${}^3J_{HH} = 6.7$ Hz, 24H, CH₃), NH₂ not detected.

2b: Yield: 14.6 (72%), m.p. $43-45^{\circ}$ C (dec.). $-$ ³¹P{¹H} NMR (C_6D_6) : $\delta = 80.4$ (s). $-$ ¹³C{¹H} NMR (C_6D_6) : $\delta = 54.5$ (d, ²J_{CP} = 9.9 Hz, PNC), 36.6 (d, ${}^{3}J_{CP} = 8.4$ Hz, NCC), 35.3 (d, ${}^{3}J_{CP} = 6.8$ Hz, NCC), 27.9 **(s,** NCCC), 27.7 **(s,** NCCC), 26.6 **(s,** NCCCC). - MS (180°C/70 eV), m/z (%): 407 (6) [M⁺], 324 (1) [M⁺ - C₆H₁₁], [NC₉H₁₆], and other fragments. - C₂₄H₄₆N₃P: calcd. 407.3429; found 407.3441 (MS). 227 (52) $[M^+ - N(C_6H_{11})_2]$, 181 (55) $[HN(C_6H_{11})_2^+]$, 138 (100)

2c: Yield: 13.6 g (67%), m.p. 72-76 °C (dec.). $-$ ³¹P{¹H} NMR (C_6D_6) : $\delta = 71.5$ (s). $-$ ¹³C{¹H} NMR (C_6D_6) : $\delta = 146.3$ (d, $^{2}J_{CP}$ = 8.7 Hz, PNC), 129.8 **(s, C-p-ph)**, 125.3 **(d, ³J_{CP} = 8.4 Hz**, C-0-ph), 123.8 (d, ${}^4J_{CP} = 0.9$ Hz, C-m-ph). - ¹H NMR (C₆D₆): $\delta = 7.25-6.95$ (m, 20 H, Ph), 1.70 (d, $^{2}J_{HP} = 17.1$ Hz, 2 H, NH₂).

[*Aminobis~diisopropy~~ino)phosp~a~ Jtricarbonylniekel(0)* **(3):** To a solution of 2.47 g (10 mmol) of **2a** in 15 ml of toluene 17 mg (10 mmol) of tetracarbonylnickel(0) is quickly added, and the mixture is stirred for 20 min. The resulting solution is stored for several days at -80° C. The separated colourless crystals of **3** are collected by filtration. Yield: 2.3 g (59%), m.p. 20° C. $-$ ³¹P{¹H} NMR (C₆D₆): $\delta = 125.6$ (s). $- {}^{13}C_1^1H$ } NMR (C₆D₆): $\delta = 197.7$ *(s,* CO), 191.9 **(s,** CO), 46.7 (d, **'Jcp** = 14.1 Hz, PNC), 23.5 (d, ${}^{3}J_{\text{CP}} = 2.1 \text{ Hz}, \text{CCH}_3$). $- {}^{1}\text{H} \text{ NMR } (\text{C}_6\text{D}_6)$: $\delta = 3.84 \text{ (m, 4H, CH)}$, 1.97 [s (b), 2H, NH₂], 1.23 (d, ³ J_{HH} = 6.9 Hz, 24H, CH₃). - MS (18O0C/7O eV), *mlz (YO):* 389 (5) [M+], 361 (30) [M+ - CO], 247 (9) $[M^+ - Ni(CO)_3]$, 147 (100) $[M^+ - Ni(CO)_3 - N(C_3H_7)_2]$, and other fragments.

Bis (diisopropy1amino)phosphane lmine-N- Trimethylalane **(4):** To a solution of 1.8 **g** (7.3 mmol) of 2a in 40 ml of pentane 3.7 ml (7.3 mmol, 2 M in hexane) of AlMe₃ is added dropwise at -78 °C. While stirring the reaction mixture is allowed to warm up to room temp. The resulting white precipitate of **4** is filtered off, dried in vacuo and recrystallised from a small amount of dichloromethane. Yield 1.74 *g* (75%), m.p. 123-125 °C (dec.). $-$ ³¹P{¹H} NMR (C_6D_6) : $\delta = 13.7$ (s). $-$ ¹³C{¹H} NMR (C_6D_6) : $\delta = 46.2$ (d, ²J_{CP} = 5.34 Hz, PNC), 23.8 (d, ${}^{3}J_{CP} = 2.7$ Hz, CCH₃), 22.2 (d, ${}^{3}J_{CP} = 2.7$ Hz, CCH₃), -5.5 [s (b), AlCH₃]. - ¹H NMR (C₆D₆): δ = 7.05 $(dd, {}^{1}J_{HP} = 563.3, {}^{3}J_{HH(jmine)} = 11.9$ Hz, 1H, PH), 3.18 (d sept, ${}^{3}J_{\text{HP}} = 17.1, {}^{3}J_{\text{HH}} = 6.8$ Hz, 4H, CH), 1.09 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 12H, CCH₃), 0.96 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 12H, CCH₃), -0.1 **[s** (b), 9H, AlCH31.

 B is[bis(diisopropylamino)phosphane *iminato*]dichloroalumini*um(III) Tetrachloroaluminate/III) (5):* To a solution of 0.56 *g* (2.3 mmol) of $2a$ in 30 ml of dichloromethane $0.3 g(2.3 mmol)$ of AlCl₃ of AlCl₃ is added at -78 °C. While stirring the reaction mixture is allowed to warm up to room temp. After evaporation of the solvent, *5* is obtained as a white powder and recrystallised from dichloromethane/pentane/toluene (1:1:1). Yield: 0.31 g, m.p. 162-165^oC (dec.). - ³¹P{¹H} NMR (C₆D₆): δ = 13.8 (s). ¹³C{¹H} NMR (C_6D_6) : $\delta = 47.3$ [s, (b), PNC], 24.3 (s, CCH₃), 23.3 (s, CCH₃). - ¹H NMR (C₆D₆): δ = 7.22 (dd, ¹J_{HP} = 578.6, $3J_{\text{HH}(imine)} = 10.9 \text{ Hz}, 2\text{ H}, \text{ PH}, 3.45 \text{ (d sept, } 3J_{\text{HP}} = 17.1, 3J_{\text{HH}} =$ 6.8 Hz, 8H, CH), 1.19 (d, ³J_{HH} = 6.8 Hz, 24H, CCH₃), 1.13 (d, ${}^{3}J_{\text{HH}}$ = 6.8 Hz, 24H, CCH₃). - ²⁷Al NMR: δ = 101.2 (AlCl₄), 100.2 (AlCl₂).

[Bis *(diisopropylamino)phosphunylamido Jchlorobis (cyclopenfu*dienyl) titanium (IV) (6a) and [Bis (diisopropylamino) phosphane im*ido [chlorobis/cyclopentadienyl] titanium (IV)* (6b): To a solution of 0.46 *g* (1.9 mmol) of **2a** in 20 ml of THF 1.8 nil (1.9 mmol, 1.6 **M** in *n*-hexane) of *n*-butyllithium is added at -40° C. The reaction mixture is allowed to warm up to -15° C, then a solution of 0.47 $g(1.9 \text{ mmol})$ of $\text{Cp}_2 \text{TiCl}_2$ in 30 ml of THF is added rapidly. The resulting dark red solution is stirred for 1 h, then the organic solvent is removed in vacuo. To the residue 30 ml of pentaneltoluene $(1:1)$ is added. The precipitated LiCl is filtered off and the solvent removed in vacuo. 6a is recrystallised from diethyl ether at -30° C. If the reaction solution is gently heated at 30° C for 4 h, 6a rearranges to compound **6b.** The rearrangement is accompanied by partial decomposition of 6a.

6a: Yield: 0.46 g (53%), m.p. 139 °C (dec.). $-$ ³¹P{¹H} NMR $(CDC1_3)$: $\delta = 98.9$ *(s).* $-$ ¹³C{¹H} NMR *(CDCl₃)*: $\delta = 114.5$ *(s, C*cp), 45.6 (d, ${}^{2}J_{CP} = 11.4$ Hz, PNC), 25.2 (d, ${}^{3}J_{CP} = 8.8$ Hz, PNCC), 24.7 (${}^{3}J_{CP} = 5.7$ Hz, PNCC). - ¹H NMR (CDCl₃): $\delta = 6.24$ (s, 10H, H-cp), 3.3 (m, 4H, NCH), 1.27 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 12H, CCH₃), 1.17 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 12H, CCH₃), NH not detected. -MS (180°C/70 eV), m/z (%): 459 (1) [M⁺], 394 (4) [M⁺ - cp], 359 $[M^+ - \text{ClTi}(\text{Cp})_2]$, 213 (40) [ClTi(Cp)₂], and other fragments. -C22H39C1N3PTi: calcd. 457.2049; found 457.2078 **(MS).** (17) $[M^+ - N(C_3H_7)_2]$, 323 (11) $[M^+ - N(C_3H_7)_2 - C]$, 246 (42)

(CDCl₃): $\delta = 113.7$ (s, C-cp), 45.1 (d, ²J_{CP} = 5.7 Hz, PNC), 24.0 **6b**: ³¹P{¹H} NMR (CDCl₃): δ = -3.9 (s). - ¹³C{¹H} NMR (s, PNCC), 23.8 (s, PNCC). $-$ ¹H NMR (CDCl₃): δ = 7.38 (d, $^{1}J_{\text{HP}}$ = 525.8 Hz, 1 H, PH), 6.07 (s, 10 H, H-cp), 3.5 (dsept, $^{3}J_{\text{HP}}$ = 16.5, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 4H, NCH), 1.29 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 12H, CCH₃), 1.20 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 12H, CCH₃).

 $[(9-Borabicyclo/3.3.1]nonan-9-yl) amino /bis (diisopropyl amino)$ *phosphane* **(7):** To a solution of 0.49 *g* (2.0 mmol) of **2a** in 20 ml of THF 1.3 ml (2.0 mmol, 1.6 M in *n*-hexane) of *n*-butylltihium is added at -30° C. The solution is then cooled to -78° C, and a Table 3. Crystallographic data and parameters of crystal structure determinations for **2b, c, 3, 4, 5,** and **6a**

^{a)} 5760 reflections with $F > 4\sigma(F)$ used for all calculations. - ^{b)} R_w

solution of 0.31 g (2.0 mmol) of B -Cl-9-BBN in 10 ml of pentane **is** added dropwise. During stirring, thc reaction mixture **is** allowed to warm up to room temp. The organic solvent is then removed under reduced pressure, pentane is added to the resulting residue, and the precipitated LiCl is filtered off **7 is** purified by crystallisation from a small amount of pentane at -80° C. Yield: 0.58 g (80%), m.p. 87°C (dec.). $-$ ³¹P{¹H} NMR (CDCl₃): δ = 73.8 (s). $-$ ¹³C{¹H} NMR (CDCl₃): δ = 45.4 (d, ²J_{CP} = 12.6 Hz, PNC), 33.7 (d, ${}^4J_{CP}$ = 33 Hz, BCC), 29.2 (m, b, BC), 24.2 (s, BCCC), 25.2 $(d, {}^{3}J_{CP} = 7.6 \text{ Hz}, \text{PNCC}, 23.7 \text{ (d, } {}^{3}J_{CP} = 5.7 \text{ Hz}, \text{PNCC}). - {}^{1}H$ NMR (CDCl₃): $\delta = 4.76$ [s (b), NH], 3.48 (d sept, ${}^{3}J_{HP} = 10.8$, $3J_{\text{HH}}$ = 5.6 Hz, 4H, NCH), 1.9–1.3 (m, 14H, 9-BBN), 1.15 (d, $3J_{\text{HH}}$ = 5.6 Hz, 12H, NCCH₃), 1.13 (d, $3J_{\text{HH}}$ = 5.6 Hz, 12H, NCCH₃). $-$ ¹¹B NMR (CDCl₃): δ = 59.4 [s (b), $w/2$ = 420 Hz]. -**MS** (180°C/70 eV), m/z (%): 367 (12) [M⁺], 267 (100) [M⁺ iPr_2N], 231 (22) $[M^+ - C_8H_{15}BN]$, and other fragments. - $C_{20}H_{43}BN_3P$: calcd. 366.3288; found 366.3305 (MS).

X-Ray Structure Determinution of **2b,c, 3,4, 5, und6a:** The structures were solved by direct methods (SHELXTL-Plus^[29]. The nonhydrogen atoms were refined anisotropically, H atoms were refined by using a riding model [full-matrix least-squares refinement on $F²$ (SHELXL-93^[30]), and *F* (SHELXTL-Plus^[29] for 3), respectively]. An absorption correction was applied on the basis of *Y* scans **(2c,** min./max. transmission = 0.734/0.976; **5** = 0.147/0.953, **6a** = 0.475/0.972) and DIFABS^[31] (2b, 3, 4). In the case of 5 the absolute structure was determined by x refinement^[32] [Flack's x parameter $-0.02(3)$], in the case of **4** the absolute structure could not be determined reliably. With **2b** and **5** an extinction correction was applied.

Details on data collection and structure refinement are given in Table 3. $-$ Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen **(FRG),** on quoting the depository number CSD-59318.

 $*$ Dedicated to Prof. Dr. Drs. h.c. *H. G. von Schnering* on the occasion of his 65th birthday.

- **L21 [la] G. M.** Kosolapoff, **L.** Maier, *Orgunophosphorus Compounds,* John Wiley & Sons, Inc., New York, **1973,** vol. *5,* p. 88. r2'] R. B. King, N. D. Sadanani, *Synth. React. Org Met.-Org. Chem.* **1985, l5(2),** 149-158. - A. B. Burg, P. J. Slota jr., *1 Am. Chem. Soc.* **1958,** 80, 1107-1109.
- c3] **[3al** A. H. Cowley, R. E. Davis, K. Remadua, *Inorg Chem.* **1981, 20,** 2146-2152. **[3b1** H. Inoue, T. Nakagome, T. Kuroiwa, T. Shirai, E. Fluck, *Z. Naturforsch., Part B*, 1987, 42, 573-578.
- ¹⁴¹**[4al** R. Appel, **U.** Baumeister, F. Knoch, *Chem. Bev.* **1983, 116,** 75-86. [4b] H. Noth, H. J. Vetter, *Chem. 5ev.* **1963,** *96,* 1308-1315.
- **r51** H. Noth, H. J. Vetter, *C'hem. 5er* **1965,** *98,* 1981-1987.
- H. Noth, H. J. Vetter, *Chem. Bet* **1963,** *94,* 1109-1118.
- L71 [7a1 R. **A.** Keat, *Top, Current. Chem.* **1982, 102,** 89-116. ^[7b] A. Tarassoli, R. Haltiwanger, A. D.Norman, *Inorg. Chem.* **1982**, 21, 2684–2690. – *R. R. Holmes, J. A. Forstner, J.* **1982**, 21, 2684–2690. – ^[7c] R. R. Holmes, J. A. Forstner, J. *Am. Chem. Soc.* **1960**, 82, 5509–5510. – ^[7d] M. L. Thompson, **A.** Tarassoli, R. Haltiwanger, A. D. Norman, *Inorg Chem.* **1987,26,** 684-689.
- ['I E. Fluck, *Top. Phosphorus Chem.,* **1967,** *4,* 295.
- 1' **Lya]** H. Noth, H. Reith, **V.** Thorn, *1 Organornet. Chem.* **1978,**

¹'1 D. E. C. Corbridge, *Studies in Inorganic Chemistry, Phosphorus,* 2nd ed., Elsevier Scientific Publishing Company, Amsterdam, **1980,** and references therein.

159, 165-169. - **ISb]** H. Maisch, *2. Naturforsch., Part B,* **1979,**

- [lo] M. Becke-Goehring, J. Schulze, *Chem. Ber* **1958,** *91,* **34,** 784-789. 1188- 1195.
- [l1IA. Schmidpeter, **H.** RoSknecht, *Chem. Bar.* **1974,** *107,* 3146-3148.
- **[12]** R. W. Reed, G. Bertrand in *Phosphorus-31 NMR Spectral Properties in Compound Characterisation and Structural Analysis* (Eds.: L. D. Quin, J. G. Verkade), VCH, Weinheim, **1994,** chapter IV, **p.** 15.
- **[I3]** According to molecular mass determination the reaction product consists mainly of cyclotri- and cyclotetraphosphazenes which could be isolated in pure form: G. Schick, E. Niecke, unpublished results.
- **[I4]** 0. Schmitz du Mont, B. Ross, H. Klieber, *Angew. Chem.* **1967,** 79, 869; *Angew. Chem. Int. Ed Engl.* **1967,** *79,* 875.
- ["I **J.** P. Gouesnard, J. Dorie, G. J. Martin, *Can. J Chem.* **1980,** 58, 1295-1304.
-
- **[16]** G. Trinquier, **M.** T. Ashby, *Inorg. Chem.* **1994,** *33,* 1306-1313. ['I L. Horner, H. Kunz, *Cliem. Bev.* **1971, 104,** 717. [17b] J. Pickardt, L. Rosch, H. Schumann, *2. Anorg. Allg Chm.* **1976,** *426* 66.
- I"] **[lUa]'D.** Gonbeau, G. Pfister-Guillouzo, **M.** Mazieres, **M.** San-Pickardt, L. Rösch, H. Schumann, Z. Anorg. Allg. Chem. 1976, 426, 66.
^[18a] D. Gonbeau, G. Pfister-Guillouzo, M. Mazieres, M. Sanchez, *Can. J. Chem.* 1985, 63, 3242–3248. - ^[18b] P. V. Sud-hakar, K. Lammertsma, *J. Am* hakar, K. Lammertsma, *J. Am. Chem. Soc.* **1991**, *113*,
1899–1906. – ^[18c] A. Schmidpeter, J. Ebeling, *Angew. Chem.*
1968, 80, 197–198; *Angew. Chem. Int. Ed. Engl.* **1968**, 7, 209; A. Schmidpeter, H. RoBknecht, *Angew Chem.* **1969,81,** 572-573; *Angew. Chem. Int. Ed. En 1* **1969,** *8,* 614; *Z. Naturforsch., Part* **1974,** *107,* 205-209. - **[L8c]** H. R. O'Neal, R. H. Neilson, *Inorg B,* **1971,** 26, 81-82. - 8. **dl** H. Binder, R. Fischer, *Chem. Ber*

Chem. **1984,** *23,* 1372-1377. - **["fl** N. Burford, **J.** A. C. Clyburne, **S.** Mason, **J.** F. Richardson, *Inorg. Chem.* **1993.** *32,* 4988-4989.

- [19] Isomerisation of a P-coordinated (diphosphany1amine)rhenium complex $[(OC)_5RhPPh_2NHPPh_2]^+$ to its PH tautomer [(OC)SRhPPh2N=P(H)Ph2]+ has been reported: **P.** Steil, **U.** Nagel, W. Beck, *J Organomet. Chemz.* **1989,** *366,* 313-331.
- l2O1 A. Schmidpeter, J. Eberling, H. Stary, C. Weingand, *Z. Anarg. A& Chem. 1972,394,* 171-186.
- L2'] **S. K.** Seale, J. L. Atwood, *J Organomet. Chem.* **1974,** *73,* ²⁷ 34.
- R. Hasselbring, H. W. Roeslq: A. Heine, D. **Stdlke,** G. M. Shel-drick. *2. Nuturforsch.. Part B.* **1993. 48.** 43-49.
- [231 R. van Bynurn,-W E. Hunter, R. D. Rogers, J. **L.** Atwood, *inorg. Chem.* **1980,** *19,* 2368-2374.
- [24] **J.** W. Lauher, R. Hoffmann, *J Am. Chem. Soc:* **1976,** *98,* 1729-1741.
- G. Alcaraz, A. Bacereido, F. Dahan, G. Bertrand, *J Am. Chem. SOC.* **1994, 116.** 1225 1229.
- *[26]* **H.** M. Olmstead, P. P. Power, A. Sigel, *Inorg. Chem.* **1988,** *27,* $2045 - 2047$
- r2'1 H. Falius, M. Babin, *Z. Anorg. Allg. Chem.* **1976, 420,** 65-71.
- [2E] H. C. Brown, **S.** U. Kulkarni, *J Organomet. Chem.* **1979,** *168,* **28** 1-293.
- G. **M.** Sheldrick, *SHELXTL-Plus,* Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA, **1989.**
- I3'1 G. **M.** Sheldrick, **SHELXTL-93,** University **of** Gottingen, **1993. ¹³'1** N. Walker, **D.** Stuart, *Actu Crystallogv., Sect. A,* **1983, 39,** $158 - 166$.
- **[12]** H. D. Flack, *Actn Crystallogr, Sect. A,* **1983,** *39,* 876-881. [96066]

FULL PAPER